×

Loading...
Ad by
  • 最优利率和cashback可以申请特批,好信用好收入offer更好。请点链接扫码加微信咨询,Scotiabank -- Nick Zhang 6478812600。
Ad by
  • 最优利率和cashback可以申请特批,好信用好收入offer更好。请点链接扫码加微信咨询,Scotiabank -- Nick Zhang 6478812600。

Some hints.

2.1 Show nZ satisfy the four axioms under + operation, you can use the condition that (Z,+) is a group.
2.2 If m not exist, then S can not form a group.
3.1 Z is set of integer, (Z,+) form a group, identity is 0, inverse is negative.
Z4 is mod(Z,4) = {0,1,2,3}. (Z4,+) form a group, it preserves the identity (0) and operation (+) as group (Z,+), so f is homeomorphism. However, the inverse on (Z4, +) is 4-a if the original one is a.
3.2 Equivalent class of any integer x on Z of mod 4 operation is: sx = { ...., x-8, x-4, x, x+4, x+8, ....}.
To prove p is an equivalent relation, 1) Reflexive. sx = sx. 2) Symmetric. sx1 = sx2 ==> sx2 = sx1. 3) Transitive.
All distince equivalent class: {...x-4, x, x+4, ...} {...,x-5, x-1, x+3, ...} {...,x-6,x-2,x+2,...} {...,x-7,x-3,x+1,...}
Report

Replies, comments and Discussions:

  • 工作学习 / 求学深造 / 离散数学,俺实在搞不定了:(((
    1) Consider the structures ({a1x + a0 | a1, a0 属于 R}, +) and ({a + ib | a, b 属于R, i的平方 = -1}, +).

    a) Show that they are groups
    b) Show that they are isomorphic.

    2) (Z, +) is a group. Denote by nZ the set of the multiple of n., i.e.
    nZ = {a | a 属于Z and there exists c 属于Z s.t. a = nc}

    a) Show that (nZ, +) is a subgroup of (Z, +).
    b) Show that for any subgroup S of the additive group Z there is a natural number m such that S = mZ.

    3) Let f : Z -> Z4 be defined by f(x) = x.4 1 (the non negative remainder when x is divided by 4) and Z4 = {0, 1, 2, 3}

    a) Prove that f is a homeomorphism from the group (Z, +) onto the group (Z4, +4).To simulate (Z, +) by (Z4, +4) we use equivalence classes of Z. We define a relation p on Z by

    xpy <->f(x) = f(y) <-> x.4 1 = y.4 1

    b) Prove that p is an equivalence relation on Z (p is the relation of congruence modulo 4). Write all the distinct equivalence classes.
    • 你们班上好像是你最牛的哟
      • 和和,俺权当你是夸俺呢。这节课俺忘记带眼镜去了,这门课没有课本:(
        • 俺有中文的可以借你。:-)
          • 我的中文课本已经托家人海运过来了,快到了。到了之后,看几下,就能恢复从前读书的状态,可以帮rainrain了。
            • 俺也有中文课本呀,可是...这怪俺自己,眼睛不是那么好还死活不愿意戴眼镜。
    • MM你要善于团结现实中一切可以团结的力量啊,不要把电话号码的保密等级设的太高啊。
      不过我也知道这个这个。。。不是很好把握的。:)
    • 此门课是唯一能把大雪时代精神百倍的我给活生生讲睡着的课, 当然得怨那个老师
      • 我觉的离散挺有意思的啊
        • 当时读的时候觉得有意思。可是后来因为一直没用,忘光啰
          • 俺是学一次不会,再学一次还不会,估计学几百次还是不会的那种笨人,和和
            • 离散讲的就是逻辑推理吧,虽说用的地方不大,其实我们都是潜移莫化中用到了。女孩子讲的是无理逻辑拉,男的讲的是有理逻辑,:).因此你还是学无理代数吧
    • 是我大学里分数最差的课程之一,当时全班50%要补考。:)
      • 是我大学学的最好成绩的一们:98
        • 大虾出招!帮帮rainrain
          • 可是毕业多年,咋记得那些代号,全还给老师了
    • 这年头,还有人念CS,看上去还是under。搞不懂。
      • 和和,不管你搞得懂不,俺读的不是cs
        • 我猜:精算专业的选修课
          • 好象才是集合论部分的题目嘛,小菜
            • no, 这个小菜是代数系统。
            • 光会说。hoho
      • 有啥搞不懂的,毕业后的形势谁说的准.
        • 我还是看好CS。——毛主席说过,世界上就怕认真二字。只要自己喜欢的专业,有点钻研精神,都是可以成功的。
          • CS 不等于 写代码! CS的基础理论才是最精彩的
    • 天灵灵地灵灵,妖精神仙JJMMGGDD快现形帮俺呀
    • 不懂,你们的数学好象和我们不一样啊,sorry.:(((
    • 哎,可惜我见到数字就头疼 :-( 帮你UP一下吧.
    • 离散数学偶最拿手, 当年考第一, 考试的时候旁边都是请我吃饭的,现在忘的差不多了. 如果有SLX, 可考虑重抄旧业. ^)*
      • 老小,我记得你上次给俺弟妹to be做过题的?快点帮帮俺吧,尤其是第1个和第2个,新的俺没听课,旧的都忘光了:(
        • 吼吼, 你不睡偶可要睡了, 今天加班到晚上10点, 明天白天还要去,如果你不急, 明天晚上帮你研究吧. SORRY. ^)&
    • 第一题是要说明是群。要证四点:存在一元,存在逆元,运算封闭,满足结合律
      • 我明天试试,谢谢!!!
    • 做出了第1道,其它2个还是不会:(很光火
      • 以做饭当诱饵,就会有N个哥哥排队上门做功课了。
      • 第2题很容易的说, 你要我做了发给你么? ^_*
        • 老小,第2个第一问俺经过下面同学的提示弄出来了:( 第2问怎么证明呀?~~~@_@
    • Some hints.
      2.1 Show nZ satisfy the four axioms under + operation, you can use the condition that (Z,+) is a group.
      2.2 If m not exist, then S can not form a group.
      3.1 Z is set of integer, (Z,+) form a group, identity is 0, inverse is negative.
      Z4 is mod(Z,4) = {0,1,2,3}. (Z4,+) form a group, it preserves the identity (0) and operation (+) as group (Z,+), so f is homeomorphism. However, the inverse on (Z4, +) is 4-a if the original one is a.
      3.2 Equivalent class of any integer x on Z of mod 4 operation is: sx = { ...., x-8, x-4, x, x+4, x+8, ....}.
      To prove p is an equivalent relation, 1) Reflexive. sx = sx. 2) Symmetric. sx1 = sx2 ==> sx2 = sx1. 3) Transitive.
      All distince equivalent class: {...x-4, x, x+4, ...} {...,x-5, x-1, x+3, ...} {...,x-6,x-2,x+2,...} {...,x-7,x-3,x+1,...}
      • 多谢乐,明天早上就due,俺现在就try。
    • 离散数学包括:集合论、图论、代数体系(近世代数)等部分,我当年可是考A的哦,可是我现在不能告诉你,因为
      这么多年了,从来不用,忘了。:D